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It has been shown that the stability of the steady-state motions of systems with 
quasi-ignorable coordinates can be judged from the stability of the equilibrium 
of a position subsystem with constant (invariable) quasi-ignorable generalized 
velocities. This allows us to disregard the degrees of freedom corresponding to 
the quasi-ignorable coordinates and to use Poincare’s results on the change of 

stability at the bifurcations of equilibria by taking the quasi-ignorable veloci- 
ties as parameters. Examples of systems of the class being considered are elec- 
tromechanical systems not containing capacitances. The results mentioned 

above are valid for them also for a nonlinear connection between B and H in 
magnetics. In the case of ignorable coordinates the judgement on the stability 
of a stationary motion from the stability of the equilibrium of a position subsys- 
tem is possible with the aid of Routh’s theorem generalized and supplemented 

by Liapunov [l] . However, this case differs essentially from the one being con- 
sidered in that it is the ignorable momenta and not the velocities that are taken 

as constants. 

1. Let there be given a system with stationary holonomic constraints, describable by 

m quasi-ignorable (Qt, . . ., Qm> and n - M position (qm+l, . . ., qn) coordinates 

(according to [2], Chap. 7, Sect. 19, a coordinate is said to be quasi-ignorable if it does 
not occur in the expressions for the kinetic energy and for the generalized forces, while 
the generalized force corresponding to it is nonsero). We assume that two kinds of ge- 

neralized forces correspond to quasi-ignorable coordinates : dissipative forces, depend- 
ing only on the quasi-ignorable generalized velocities, and constant forces. We take the 
generalized forces corresponding to the position coordinates to be potential ; we shall 
talk about the influence of dissipation on the position coordinates later on. A “position” 

subsystem can be a distributed-parameter system also. The system’s kinetic potential 
L and the dissipation function F have the form 

383 



384 K.Sh.Khobzhaev 

(1.1) 

Two forms of motion are possible in the systems being examined 

&’ = h, = const (r = 1, . . ., 172) 

qmi_r = u, = cmst (r = I,. . ., IL - nz) (1.2) 
where the constants h,, U, are determined from the equations 

aF @I 
ah, = er 0” = 1,. .( m) (1.3) 

an(u)= ar1 (h, u) 

ik au, 
(I’ I= f, . . ., n - m) 

Here e, are the constant generalized forces corresponding to the quasi-ignorable coor- 
dinates, h = (h,, . . ., h,), the designations 11 (IL), T, (h, u) have an analogous 
meaning. For distributed-<parameter systems the second group of equations in (1.3) 
should be undestood as the conditional notation of the equilibriumequations of the posi- 
tion subsystem under the action of the forces originating in the quasi-ignorable subsys- 
tem. According to (1.3) the quasi-ignorable velocities in the stationary motion do not 
depend on the position coordinates and they can be given arbitrary values (at least with- 
in certain limits) by varying the dissipation and the constant generalized forces. There- 

fore, when determining the possible positions of equilibrium of the position sybsystem it 
is permissible to reckon that the quasi-ignorable velocities are given directly. As a re- 
sult we obtain the problem on the equilibrium of the position subsystem under the action 

of forces depending on the parameters ; the quasi-ignorable subsystem is excluded from 
consideration. Let us show that the stability problem for the solutions (1.2) also reduces 

to the investigation of the stability of the equilibrium of the position subsystem under 
the assumption that the quasi-ignorable velocities are prescribed (nonvariable) parame- 
ters, 

We introduce the perturbations q,., 5, by the relations 

%’ = h, + qr’, r = 1,. . . , m, qrn+? = u, + C,., r = 1, . . ., n - m, 

(1.5) 
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GF (h) 
b,, = ah 7 c 

m-I (u) 1 
i 

(u) a2aij 
t II rs = au,au, -i i, i_l au&l, 

We investigate the stability with respect to the variables 

Ql , . * .7 4m 7 4m+1r. * .I 4n 

hihj 

The original system is obtained from the conservative one after introducing in it dis- 

sipative forces with partial dissipation. Therefore, motion (1.2) is stable if the varia- 

tional equations do not have unbounded solutions (undamped oscillations, i. e. pure ima- 

ginary roots, are admissible) and is unstable if unbounded solutions exist. We adopt the 

very same criterion also for distributed-parameter systems. We do not examine the case 

when time-independent solutions tar’, . . ., qm 9 ’ 51, . . ., C&,-m occu. We assume 
that dissipation with respect to the quasi-ignorable coordinates is total and that the mat- 

rix II b,, /I’ P . is osrtive definite. Let us suppose that the equilibrium of the position sub- 
system, considered under the assumption that the quasi-ignorable velocities are constant, 

is unstable or possesses provisional stability. Let us suppose also that not one solution 5” 
of the equations describing the small oscillations of the position subsystem with constant 

quasi-ignorable velocities 
n--m 

2 [%ntrmts (4 Ls” + (gmtrmts (h, u) - gmtsmtr (k 4) Svs’ + c,, (k u) LI = 0 
S=l 

(r=i,...,n-m) (1.6) 

satisfies simultaneously the m conditions 
n--m 

2 [~rm+s (u) L” -t g,,;, (4 u) 5vs.l = 0 (1.7) 
S=l 

(r = 1, . ., m) 

Then the corresponding solution (1.2) is unstable. 
Indeed, let us assume that it is stable. From the relation 

dH,/dt = - 2F, 

(1.8) 

it follows that in stable motion the Q’(L),.... qllL’(t) are such that the integral 

; 
! F, (T) dt 
io 

is bounded as t -f 0 . Let us show that in the given case system (1.4) cannot have only 
solutions satisfying the condition Al,.‘, 5, -= 6 as t -. ce. Indeed, let us choose initial 

conditions such that we have H,.o < 0. According to (1.8), Ii:, :-i 1l,0 for all t. But if 

V,.‘, i:, -+ 0, then H,. - 0, which contradicts the requirement Ei,; iX< Heo. Thus, system 

(1.4) should have a particular solution in which j, = z8 cos (At + II_.:) and at least a 
part of the Z$ are nonzero. while the q.,’ are such that the integral of. F* (t) is bounded 
as t--r 30. Let us consider the second sum in one of the first 172 equations in (1.4). It is 
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a linear form in cs’, c,“and for the & of the indicated form either vanishes identically 
or turns into the function Z,. cos (ht + I?+,), The first sum in the equation being conside- 

red also has the very same form. But this sum is a linear form in %‘, qs”. Consequently, 
if both sums do not vanish identically, then at least one of the functions qs’ should con- 

tain a term of the form zs cos (Lt + vs). But for an ns’ of such a form and for a positive- 
definite 11 b,, 11 the integral of F, is not bounded. Therefore, in a stable motion all 2n~ 

sums mentioned should be identically equal to zero. By the same method we find that 

each of the 2 (n - nz) sums in the second group of equations in (1.4) should be identic- 

ally equal to zero. As a result we have obtained that in the solution being considered 
the 5, satisfy both Eqs. (1.6) as well as conditions (1.7). But this is impossible by assum- 

ption. Consequently, system (1.4) cannot have only solutions where the integral of F,(t) 
is bounded, while the &. are bounded or tend to zero as t --) Q ; this exhibits the insta- 
bility. 

Equalities (1.7) correspond to the cases when a part of the unknowns in (1.4) is found 
independently of the remaining ones. Here, as before, the instability of the position sub- 
system implies the instability of the whole system (1.4), but for provisional stability of 
the position subsystem the whole system can be both stable as well as unstable. Suppose 

that the position subsystem with constant quasi-ignorable velocities is unstable. If an 
unbounded solution 5” satisfies conditions (1.7), then system (1.4) has an unbounded 
solution of the form 7’ = 0, 6 = cy, which signifies instability. Let us assume that 

a certain number of bounded solutions cy, f& , etc. satisfies conditions (1.7). Solutions 

of the form q’ = 0, 5 = cy, &L , . . . , are particular solutions of system (1.4). We 
consider the collection of its solutions which are linearly independent of these solutions. 

The preceding proof of instability is valid for them. 
The following case is possible when the position subsystem is provisionally unstable. 

We examine the particular solutions cy satisfying the requirement that the inequality 
T2 (&.‘) -k n, (6”) < 0 be fulfilled for certain t . We assume that all such i& satis- 

fy conditions (1.7). Then for any solution q’, 5 of system (1.4), linearly independent 
of all solutions of the form 7’ zz 0, 5 = Py, the inequality H, (q’, 5, 5’) > Cl 
is fulfilled for all t and the preceding proof of instability turns out to be invalid. In this 

(and only in this) case the provisional stability can be preserved for the whole system 
(1.4). A trivial example of the preservation of provisional stability is the case when all 

asmtr9 g smtr equal zero and system (1.4) splits up into two unconnected subsystems. 
If a position subsystem with nonvariable quasi-ignorable velocities possesses secular sta- 

bility, then solution (1.2) is stable. 
Indeed, let us examine a system whose oscillations are described by equations of per- 

turbed motion. The energy relation 
dH,,ldt = - 2Pe1 (I 3) 

11*1=: H, + II*z(q', 5-9 517 F,l= F, + F,z(q') 

is valid for it, and the expansions of functions Hss, F*? in powers of their arguments 
start with terms of order higher than two. Therefore, for values of arguments sufficiently 
small in modulus. I[,, is positive definite,while its time derivative,taken by virtue of that 
equations of perturbed motion, is not positive. 

If 6,LL, Ill-c:; - Gm+sn+r = 0, r, s == 1, . . . , n - m, for example, in the 
case of a gyroscopically unconnected system with U = 0, the equation of small 
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oscillations of the position subsystem with constant quasi-ignorable velocities do not 
contain gyroscopic terms and provisional stability is impossible. In this case the stabi- 
lity of the stationary motions is uniquely determined by the equilibrium properties and 

does not depend on whether dissipation with respect to the position coordinates is taken 
into account. In the general case instability and secular stability are determined from 

the equilibrium properties (independently of dissipation in the position subsystem). But 
in this case the judgement on stability will be unique if the dissipative forces correspon- 
ding to the position coordinates are taken into account. 

2, An important example of systems of the class being considered are electromecha- 
nical systems with closed conduction currents (i. e. not containing capacitances as well 
as slide contacts) In many cases such systems are sufficiently accurately described in 

a quasi-stationary approximation. If, further, we can take it that the dimensions of the 
cross sections of the conductors are small in comparison with their lengths and that the 
resistances do not depend upon the displacements, then the system has a kinetic poten- 
tial and a dissipation function of the previous form. Here the role of quasi-ignorable 
coordinates is played by the charges, of the velocities, by the currents, the constant 

“quasi-ignorable” generalized forces are the external electromotive forces, and the dis- 

sipation in the quasi-ignorable coordinates is stipulated by the resistances of the conduc- 
tors ; the mechanical generalized coordinates are, however, position coordinates. The 
magnetic field energy corresponds to the term T, in the expression for the kinetic energy, 
while its derivatives with respect to q,nLr determine the ponderomotive forces. The ex- 
pression for T usually does not contain the term U . 

In the case of an electromechanical system the constant values of currents and mech- 

anical equilibrium under the action of a constant magnetic field correspond to a station- 
ary solution. In this case the results of Sect. 1 allow us to disregard the “electrical” de- 
grees of freedom, in particular, the electrical circuit, the feed method, etc. are of no 

interest. They also permit us to judge the stability from the dependency of the form of 

equilibrium on the currents with the aid of Poincard’s theory of bifurcations. 
The preceding discussion can be extended also to “magnetically nonlinear”electrome- 

chanical systems under the condition that hysteresis can be neglected. Here the expres- 
sion for T differs from the one adopted earlier only in that a different form of the cur- 

rent function enters into it in the place of the quadratic form T,. Therefore, it is suffi- 
cient to show that the form 

(2.1) 

is positive definite. We restrict ourselves to the case when the induction vector I3 and 
the field strength vector H in magnetic theory are parallel, while the function B (if) 
is an increasing function. For paraliel B and 11 

If 

(2.2) 

where the first integral is taken over the whole space. Let us find the increment .!J Ti= 

T, (h + 11') - I', (h), by retaining the squares of pi’ , . . ., qm’_ By AI1 = 
H (h + q’) - H (1) t we denote the increment in the field strengtn. Retaining the 

second-order terms in AH, we obtain 
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in the magneti~aily-nonlinear case AH includes not only the first but also the higher 

degrees of increments of currents_ But from the relation in 133 (Chap. IV, Sect. 32) 

where (D, is the magnetic flux through the loop of the rth current, it follows that the 
integral of ]BAH is a linear form in the qi’, . . ., qm’. Therefore, the value of form 
(2.3) is found from the last two terms in (2.3) if in them we replace AH by the part of 

ilE% which is linear in Q’, . . ., qm’. This part vanishes in the whole space only for 
?]i’, * 1 ., qm’ = 0. Taking into account the form of the last terms in (2.3) we con- 
clude that form (2.1) is positive definite, 

Under the assumption that the displacements do not change the resistances (a valid 

one, for example, if the conductors are fixed but the nonconductive magnetizable bodies 
move) it is possible to generalize also to the case when there are solid conductors. In 
this case we should use the expansions, mentioned in [4] (Chap. V), of the current density 
in terms of solenoidal functions of the space coordinates. Then the sole difference from 
the preceding discussion is that we obtain a system with a countable set of quasi-ignora- 
ble coordinates. In the case of ignorable coordinates judgement on the stability of the 
stationary motion from the stability of the eq~librium of the position subsystem can be 
made by means of Routh’s theorem as generalized by Liapunov and of supplements to it 

[l]. In this case, however, it is the ignorable momenta and not the velocities which are 
taken as constants, The stability conditions obtained by means of the Routh theorem 

are broader than the stability conditions for the same system but with quasi-ignorabb 
coordinates. 

Let us show this for the case G = 0. By pl,. . . , plr, we denote the ignorable momenta 

and by v, = IT -I- Tl tip, u the Routh-altered force function. The solution (in~+~ = UP = ) 
con&, f = II - Izz,is stable if the quadratic form 

‘IL-??? 
W' 

2 --.--.L7~,z's 

7, s=1 DLls fills 
(2.5) 

is positive definite, and is unstable if this form takes negative values for some rlr..., 
%-m However, when the coordinates ql,. . ., qm are quasi-ignorable, we should insert 
into (2.5) the function l7 = n - TI (h U) instead of lrft. Suppose that the quantities 
qt.+ = I?,, I‘ = I,...) nz, are the same in systems with ignorable and with quasi-ignorable 
coordinates. Then solutions exist where the +. also are the same, For such solutions we 
set up the form (2.5) and the analogous form containing V, taking into account that the 
coefficient matrix j/ n,,Cel) Ii in T, (p, u) is inverse to the matrix 11 al.* I(. As a result we 
obtain that the difference between(2.5) and the second form equals the nonnegative 

quantity 

; I‘s ar,@f f 
I‘, s=1 

where 
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Among electromechanical systems Routh’s theorem covers systems with superconduc- 
tive loops. We disregard those exceptional cases when both the quadratic forms mention- 
ed above vanish for one and the same z~i, . . . , D,_,. Then the preceding discussion 

signifies that the forms of equilibrium under the action of a magnetic field which are 
stable when the field is created by loops with finite conductivity, are stable also for 
superconductivity, but forms exist which are stable only in the case of superconductive 

loops. Systems with superconductive loops possess, consequently, qualitative singularities 
in the “purely mechanical” sense being considered here. 
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The applications of normal forms (see [1] for the history and a bibliography) 

to nonlinear oscillations have been outlined in [2]. As one of the applied prob- 
lems we indicate the investigations of Ishlinskii ( 133, Appendix 2) in [4]. One 

unsolved problem that remains is the derivation of recurrence formulas for com- 
puting the coefficients of the normalizing transformations and of the normal 
forms. These formulas have been derived below for a general case in the theory 

of oscillations (the absence of nonprime elementary divisors in the matrix of the 
linear part) on the basis of Briuno’s theorem Cl]. 

1. Statement of the problem. Let an oscillatorysystem be described by an 
nth-order autonomous system of differential equations, in which the variables can also 

be complex valued. We assume that the elementary divisors of the matrix of its 

linear part are prime. For oscillatory systems with Hermitian or unitary matrices of the 
linear part the latter condition is fulfilled by virtue of the Weierstrass theorem (for ex- 
ample, see [5], Sect. I. 1.14). We shall assume that the original system has already been 
reduced to diagonal form and that its right-hand side is analytic in some neighborhood 


